New Worst-Case Upper Bound for #2-SAT and #3-SAT with the Number of Clauses as the Parameter
نویسندگان
چکیده
The rigorous theoretical analyses of algorithms for #SAT have been proposed in the literature. As we know, previous algorithms for solving #SAT have been analyzed only regarding the number of variables as the parameter. However, the time complexity for solving #SAT instances depends not only on the number of variables, but also on the number of clauses. Therefore, it is significant to exploit the time complexity from the other point of view, i.e. the number of clauses. In this paper, we present algorithms for solving #2-SAT and #3-SAT with rigorous complexity analyses using the number of clauses as the parameter. By analyzing the algorithms, we obtain the new worst-case upper bounds O(1.1892) for #2-SAT and O(1.4142) for #3-SAT, where m is the number of clauses.
منابع مشابه
New worst upper bound for #SAT
The rigorous theoretical analyses of algorithms for #SAT have been proposed in the literature. As we know, previous algorithms for solving #SAT have been analyzed only regarding the number of variables as the parameter. However, the time complexity for solving #SAT instances depends not only on the number of variables, but also on the number of clauses. Therefore, it is significant to exploit t...
متن کاملNew Methods for 3-SAT Decision and Worst-case Analysis
We prove the worst-case upper bound 1:5045 n for the time complexity of 3-SAT decision, where n is the number of variables in the input formula, introducing new methods for the analysis as well as new algorithmic techniques. We add new 2-and 3-clauses, called \blocked clauses", generalizing the extension rule of \Extended Resolution." Our methods for estimating the size of trees lead to a reene...
متن کاملNew upper bound for the #3-SAT problem
We present a new deterministic algorithm for the #3-SAT problem, based on the DPLL strategy. It uses a new approach for counting models of instances with low density. This allows us to assume the adding of more 2-clauses than in previous algorithms. The algorithm achieves a running time of O(1.6423) in the worst case which improves the current best bound of O(1.6737) by Dahllöf et al.
متن کاملExact Max 2-Sat: Easier and Faster
Prior algorithms known for exactly solving Max 2-Sat improve upon the trivial upper bound only for very sparse instances. We present new algorithms for exactly solving (in fact, counting) weighted Max 2-Sat instances. One of them has a good performance if the underlying constraint graph has a small separator decomposition, another has a slightly improved worst case performance. For a 2-Sat inst...
متن کاملThe Parameterized Complexity of k-Flip Local Search for SAT and MAX SAT
SAT and MAX SAT are among the most prominent problems for which local search algorithms have been successfully applied. A fundamental task for such an algorithm is to increase the number of clauses satisfied by a given truth assignment by flipping the truth values of at most k variables (k-flip local search). For a total number of n variables the size of the search space is of order nk and grow...
متن کامل